Math 4200-001
Week 7-8 concepts and homework
2.4
Due Friday October 16 at 11:59 p.m.

24 2,3,5,7,8,12, 16, 17, 18. Hint: In problems 2, 5, 18 identify the contour
integrals as expressing a certain function or one of its derivatives, at a point inside vy, via
the Cauchy integral formulas for analytic functions and their derivatives.

w7.1 Prove the special case of the Cauchy integral formula that we discuss on
Wednesday, in Monday's notes:

If yisa counter-clockwise simple closed curve bounding a subdomain B in 4, with z,

inside vy, then the important special case of the Cauchy integral formula can be proven

with contour replacement and a limiting argument, assuming f is C' in addition to

being analytic: ? v placsiand Ho
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w7.2 Prove the positive distance lemma, which we make much use of in proving
various theorems: If K = C is compact, and if K & O, where O is open, then there
exists an € > 0 such that for each z € K, D(z;€) = O. (This is equivalent to Distance
Lemma 1.4.21 in the text. See if you can find a proof without looking there first, but

in any case write a proof in your own words.)
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Corollary Let {f,}:4—C analytic. Suppose {f,}—/ uniformly on 4. Then

f:A—C is also analytic. (Contrast this with the analogous false theorem for
differentiable functions on subdomains of R). 5
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proof- Can you check these pieces, and combine theminto a p}foof7 fMLrC»L ~%.

{ (1) f is continuous, because uniform limits of continuous functions are continuous.
(3210-3220?)

(i) If {f,}—=f umformly on 4 and if the rectangle lemma holds for each f, (which it

does, because each f, is analytic), then the rectangle lemma holds for f.
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One of the most-studied analytic functions is the Riemann -Zeta function. 1t is
customary to write the complex variable as s in this case, rather than z. And for

Re(s) > 1, the Zeta function {(s) is defined by
I
()= D2, — » Resod

n=1n
where for s=x + i y, each term
N n—s:e—slog(n):e—(x-i-iy) ln!n):n—xe—iyln(n)

is analytic in s. Note that for x > 1, the sum of moduli [
0]
> |- :
ST L <%
n=111 n=1nNn

and for x > 1 + 8 (with & > 0) the absolute convergence is uniform, so also the partial
sums —
S
Cy(s) = 2,
n=1n
converge uniformly to {(s). Thus {(s) is analytic on the half plane Re(s) > 1, by

' . Your favorite divergent series
Unat- L ’l'va\ oo 1

G(1)= 2, — =+ N
n=1Hn
shows that {(s) is not analytic at s=1. Somewhat surprisingly, {(s) can be extended
to be analytic in all of C \ {1}, however. (Such extensions must always be unique, it
turns out.) The formulas for this extended function {(s) look different than the one
that works on the half plane Re(s) > 1.

The Riemann Zeta function has surprising connections to number theory, in particular to
the prime number theorem, which is about how prime numbers are distributed in the
natural numbers.

The Riemann Hypothesis is Riemann's conjecture from the 1800's, that all of the so-

.. : .. : 1
called non-trivial zeroes of the Riemann function lie on the line {Re(s) =5 } (The

other zeroes of the zeta function occur at the negative even integers.) It's considered one
of the greatest unproven conjectures in mathematics, see for example the Millenium
prizes. Of the billions of zeroes of the Riemann function which have been found, they're
all on that line! Many results in number theory would follow if the Riemann hypothesis
is true, so people are in the habit of proving theorems, where one of the assumptions is
that the Riemann Hypothesis is true.

This is a great topic area for a research report in our course, if your interests go in this
direction.



The output of the zeta function, plotted as a "graph" above the complex domain, with
contours for the modulus and so that the color represents the argument of {(z). From
wikipedia:

Riemann zeta function
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The Riemann zeta function {(z) plotted with
domain coIoring.[1]

Basic features

Domain C\ {1}
Codomain C

Specific values

At zero 1
Limit to +go 1
Value at 2 2
6
Value at —1 1
12

Value at —2 0



Math 4200

Friday October 16
2.4-2.5 mean value property for analytic and harmonic functions, and maximum

modulus principles. But We'll begin by finishing Wednesday's notes with the
introduction to the Riemann-Zeta function. The mean value property and maximum
principle have many consequences, as we'll see on Monday.

Announcements:



Mean value property Let f:A4— C analytic, ﬁ(zo; R) S A. Then the value of f at

z, 1s the average of the values of f* on the concentric circle of radius R about z,:
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Remark harmonic functions also satsify a mean valy€ property. How do you think
you'd go about proving it? Lt w (< han
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A cool way to justify the harmonic conjugate construction in simply connected domains.
...and also to deduce that harmonic functions are infinitely differentiable.....we appealed
back to multivariable calculus earlier in the course for the conjugate construction.
(Harmonic conjugates show up in our proof of the mean value property for harmonic

functions, atdthe-end-efWednesday'snotess)

in LW et -
Theorem Let A & C be open and simply connected, and let u: 4 — R be C? and
harmonic. Then there exists a harmonic conjugate v: 4 = R, i.e. so that f=u + i v is
analytic. Furthermore, both u, v are actually C”, i.e. all partial derivatives exist and
are continuous.

proof. If f existed, then f would be infinitely complex differentiable, and so in

i

particular /* would be analytic...
S =hFu v, e

=V, iu,. .
In other words,

glz)=u, - i U,
would be analytic. Actually, CR holds for g(z) defined as above just because u is

harmonic and €2, and because g hds continuous first partials, so g IS analytic: Check
(This was previous HW):
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Since g is analytic on 4 and 4 is simply connected, g has an antiderivative
G=U+iV. G';g SO
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so U, =u,, U,=u, so U=u + C where C is a real constant because 4 is connected.
Thus ' ’

f:= G— C:LZL-F ZL 5 awalzalﬂ, & OOI ,a dﬁﬂwh .

is analytic, 1.e. V' is a harmonic conjugate to u. Since G is infinitely complex
differentiable, u, V' are infinitely real differentiable.
QED.



Theorem (Maximum modulus principle). Let 4 & C be an open, connected, bounded
set. Let f: A— C be analytic, f: 4 — C continuous. Then

A

Ceset ) A

i.e. the maximum absolute value of f(z) occurs on the boundary of 4. (Recall that for
= o

an open set A, the boundary d 4 = A \ A. For general sets the boundary is the

collection of points which are in the closure of the set as well as in the closure of its
complement.)

Part2

Furthermore if 3 zy € A with |f(z))|=M, then f is a constant function on AL

Ponk 1 max, ¢ 4 {I/(2)]] = max,_ g (1/(2)]}i= M.

Example: What is the maximum absolute value of f(z) = (z — 2)2 on the closed disk

D(0; 2) and where does it occur ?
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proof of maximum modulus principle: Let
B={ze 4] |f(z)|=M}
Our goal is to show that either:
(i) B=@, which implies that all points in 4 for which |f(z)| =M are on the
boundary of 4, as the theorem claims. And in this case there is no z, € 4 with
£ (20)[ =M.
OR

(i1) B=A. Inthiscase |f(z)| is constant. Write f=u + i v and so we have
> +12 = M?
If M=0 then f=0 on 4 and we are done. Otherwise M > 0 and taking x and
y partials we get the system for each z € 4:

u, v, u 0
u, v, % 0

Since M # 0, (u, v) # (0, 0) at any point. Thus the determinant of the matrix is

A



identically zero. But the determinant of the matrix is

Uy — uyvx=u)2c + u)Z} = vﬁ + v)zc.
Thus the gradients of u, v are identically zero on the connected open set 4, so u and v

are each constants on 4 and f is as well. This must be the case that occurs if 4z, € 4
with |f(zy)|=M.



Following the outline on the previous page, we have

B={ze 4| |f(z)|=M}.
Suppose we are not in case (1), i.e. B * & . We will show that B is open and closed in
A which will imply that B must be all of 4, since 4 is connected. Thus we are in case

(ii).

Why is B closed in 4?

To show B is open, let zy € B, D(zy, p) = 4. We'll show |f(z)|=M
V z € D(zy, p). Each such z in the disk is of the form z=zy + r e ¥ with » < p. But

for 0 < r < p we have the mean value property
2w
1

f(20) = —J f(zg+re'®) ae.

2T

Use this and |f(z))|=M to show each ‘f(zo —i—reie)‘:M as well.



This generalizes an exercise that is due today (2.4.4) where you assume a domain 4 was
bounded by a simply connected, p.w. C ! contour and probably use the CIF.

Theorem
Let A = C be an open, connected, bounded set. Let f, g: 4 — C be analytic,

f, g: A— C continuous. Then

max, ¢ {1/ () — (=) } = max__ (17(2) — (=)},
In particular, if f=g on 0 4, then f=g on all of 4.

proof:



Theorem (Maximum and minimum principle for harmonic functions). Let 4 & R? be
an open, connected, bounded set. Let u: 4 — R be harmonic and Cz, u:A-R

continuous. Then

= max X, y)} =M,

(r.y) < 54t
=min . é‘)A{u(x,y)} = m,
Furthermore if 3 (xO, yo) < A4 with u(x, yo) =M or u(xo, yo) =m, then u is a
constant function on 4.

Example: u(x, y) =x* — y2 is harmonic. Where are the maximum and minimum
values of u attained, on D(0; 2) ?

proof: The maximum principle implies the minimum principle, since the minimum
principle for u(x, y) is equivalent to the maximum principle for v(x, y) =-u(x, y). In
other words, minimum values for u(x, y) correspond to maximum values for -u(x, y),
and u is harmonic if and only if -u i1s. So we'll focus on the maximum principle. The
key tool is the mean value principle for harmonic functions: For every closed disk in 4,
the average value of u on the bounding circle equals the value at the center. Can you
see how the proof goes, if we follow the outline of the maximum modulus principle
proof?

Use: if D(zy;p) S A4 then for each 0 < r < p,
2n
1

u(xp, ¥o) = EJ u(xo + rcos(0), v, + 7 sin(@)) do
0



Math 4200-001
Week 8 concepts and homework
2.4-2.5
Due Friday October 23 at 11:59 p.m.

25 2,5,7,8,10, 15, 18.
3.1 4,6,7,12



