
Math 4200-001
Week 7-8 concepts and homework

2.4
Due Friday October 16 at 11:59 p.m.

2.4     2, 3, 5, 7, 8, 12, 16, 17, 18.  Hint:  In problems 2, 5, 18 identify the contour 
integrals as expressing a certain function or one of its derivatives, at a point inside , via
the Cauchy integral formulas for analytic functions and their derivatives.

w7.1  Prove the special case of the Cauchy integral formula that we discuss on 
Wednesday, in Monday's notes:  

If  is a  counter-clockwise simple closed curve bounding a subdomain B  in A , with z0  

inside , then the important special case of the Cauchy integral formula can be proven 
with contour replacement and a limiting argument, assuming f  is C1  in addition to 
being analytic:

f z0 = 1
2  i

 f z
z z0

 dz.

w7.2  Prove the positive distance lemma, which we make much use of in proving 
various theorems:  If K  is compact, and if K O , where O  is open, then there 
exists an 0 such that for each z K , D z; O .  (This is equivalent to Distance
Lemma 1.4.21 in the text.  See if you can find  a proof without looking there first, but 
in any case write a proof in your own words.)
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Corollary  Let fn : A  analytic.  Suppose fn f  uniformly on A .  Then 
f : A  is also analytic.  (Contrast this with the analogous false theorem for 
differentiable functions on subdomains of ).  

proof:  Can you check these pieces, and combine them into a proof?  

(i)  f  is continuous, because uniform limits of continuous functions are continuous.  
(3210-3220?)
(ii)  If fn f  uniformly on A  and if the rectangle lemma holds for each fn  (which it 
does, because each fn  is analytic), then the rectangle lemma holds for f .
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One of the most-studied analytic functions is the Riemann -Zeta function.  It is 
customary to write the complex variable as s in this case, rather than z.  And for 
Re s 1, the Zeta function  s  is defined by 

s
n = 1

1
ns

where for s = x i y, each term
n s = e s log n = e x i y  ln n = n xe i y ln n

is analytic in s.  Note that for x 1, the sum of moduli

n = 1

1
ns  = 

n = 1

1
nx   

and for x 1  (with 0) the absolute convergence is uniform, so also the partial 
sums

N s
n = 1

N
1
ns

converge uniformly to s .  Thus s  is analytic on the half plane Re s 1, by 
Morera's Theorem.  Your favorite divergent series

1 =
n = 1

1
n

=

shows that s  is not analytic at s = 1.  Somewhat surprisingly, s  can be extended 
to be analytic in all of 1 , however.  (Such extensions must always be unique, it 
turns out.)  The formulas for this extended function s  look different than the one 
that works on the half plane Re s 1.

The Riemann Zeta function has surprising connections to number theory, in particular to 
the prime number theorem, which is about how prime numbers are distributed in the 
natural numbers.
The Riemann Hypothesis is Riemann's conjecture from the 1800's, that all of the so-

called non-trivial zeroes of the Riemann function lie on the line Re s = 1
2 .  (The 

other zeroes of the zeta function occur at the negative even integers.)  It's considered one
of the greatest unproven conjectures in mathematics, see for example the Millenium 
prizes.  Of the billions of zeroes of the Riemann function which have been found, they're
all on that line!  Many results in number theory would follow if the Riemann hypothesis 
is true, so people are in the habit of proving theorems, where one of the assumptions is 
that the Riemann Hypothesis is true.

This is a great topic area for a research report in our course, if your interests go in this 
direction.
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The output of the zeta function, plotted as a "graph" above the complex domain, with 
contours for the modulus and so that the color represents the argument of z .  From 

wikipedia:  
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Math 4200
Friday October 16
2.4-2.5  mean value property for analytic and harmonic functions, and maximum 
modulus principles.  But We'll begin by finishing Wednesday's notes with the 
introduction to the Riemann-Zeta function.  The mean value property and maximum 
principle have many consequences, as we'll see on Monday.

Announcements: Hw questions
Yo 2 overivier wewrotenotes but

I forgot torecordthispart



Mean value property   Let  f : A  analytic, D
_

z0; R A .  Then the value of f  at 
z0  is the average of the values of f  on the concentric circle of radius R  about z0 :

f z0 = 1
2 

0

2 

f z0 R ei   d

proof: 

Remark  harmonic functions also satsify a mean value property.  How do you think 
you'd go about proving it?
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A cool way to justify the harmonic conjugate construction in simply connected domains.
...and also to deduce that harmonic functions are infinitely differentiable.....we appealed 
back to multivariable calculus earlier in the course for the conjugate construction. 
(Harmonic conjugates show up in our proof of the mean value property for harmonic 
functions, at the end of Wednesday's notes.)

Theorem  Let A  be open and simply connected, and let u : A  be C2  and 
harmonic.  Then there exists a harmonic conjugate v : A , i.e. so that f = u i v is 
analytic.  Furthermore, both u, v are actually C , i.e. all partial derivatives exist and 
are continuous.

proof.  If f  existed, then f  would be infinitely complex differentiable, and so in 
particular f   would be analytic...

f  = fx = ux  i vx
          = vy  i uy .

In other words, 
g z = ux  i uy

would be analytic.   Actually, CR holds for g z  defined as above just because u is 
harmonic and C2 , and because g has continuous first partials, so g IS analytic:  Check  
(This was previous HW):

Since g is analytic on A  and A  is simply connected, g has an antiderivative 
G = U i V .  G = g so

Ux  i Vx = Vy i Uy = ux i uy

so Ux = ux, Uy = uy  so U = u C where C is a real constant because A  is connected.  
Thus

f G C = u i V

is analytic, i.e. V  is a harmonic conjugate to u.  Since G is infinitely complex 
differentiable, u, V  are infinitely real differentiable.

QED.
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Theorem  (Maximum modulus principle).  Let A  be an open, connected, bounded 
set.  Let f : A  be analytic, f : A

_
 continuous.  Then

maxz A
_ f z   =  maxz  A f z M ,

i.e. the maximum absolute value of f z  occurs on the boundary of A .  (Recall that for 
an open set A , the boundary  A = A

_
A .  For general sets the boundary is the 

collection of points which are in the closure of the set as well as in the closure of its 
complement.)

Furthermore if z0 A  with f z0 = M , then f  is a constant function on A .

Example:  What is the maximum absolute value of f z = z 2 2  on the closed disk 
D
_

0; 2  and where does it occur ?

proof of maximum modulus principle:  Let 
B = z A   f z = M

Our goal is to show that either:
      (i)  B = , which implies that all points in A

_
 for which f z = M  are on the 

boundary of A , as the theorem claims.  And in this case there is no z0 A  with 
f z0 = M .

OR

      (ii)  B = A .  In this case f z  is constant.  Write f = u i v and so we have
u2 v2 M2

If M = 0 then f = 0 on A  and we are done.  Otherwise M 0 and taking x and 
y partials we get  the system for each z A :

ux vx

uy vy

u

v
=

0

0
.

Since M 0, u, v 0, 0  at any point. Thus the determinant of the matrix is 

OA
Panta zA a

0

Part2 I

whereis 12212 largest

A
on 131077

2 2

h dist from2 to 2
maximized at 2 2

max 12212 on closedicdish is 42 16
occurs on bdryof disk

to be continued



identically zero.  But the determinant of the matrix is
uxvy uyvx = ux

2 uy
2 = vy

2 vx
2 .

Thus the gradients of u, v are identically zero on the connected open set A , so u and v 
are each constants on A  and f  is as well.  This must be the case that occurs if z0 A  
with f z0 = M .



Following the outline on the previous page, we have
B = z A   f z = M .

Suppose we are not in case (i), i.e. B .  We will show that B  is open and closed in 
A  which will imply that B  must be all of A , since A  is connected.  Thus we are in case 
(ii).

Why is B  closed in A?

To show B  is open, let z0 B, D z0, A .  We'll show f z = M  

z D z0, .  Each such z in the disk is of the form z = z0 r ei  with r .  But
for 0  r  we have the mean value property

f z0 = 1
2 

0

2 

f z0 r ei  d .

Use this and f z0 = M  to show each f z0 r ei = M  as well.



This generalizes an exercise that is due today (2.4.4) where you assume a domain A  was 
bounded by a simply connected, p.w. C1  contour and probably use the CIF.

Theorem
Let A  be an open, connected, bounded set.  Let f, g : A  be analytic, 
f, g : A

_
 continuous.  Then

maxz A
_ f z g z   =  maxz  A f z g z .

In particular, if f = g on  A , then f = g on all of A .

proof:



Theorem  (Maximum and minimum principle for harmonic functions).  Let A 2  be 
an open, connected, bounded set.  Let u : A  be harmonic and C2 , u : A

_
 

continuous.  Then

max x, y A
_ u x, y  =  max x, y  A u x, y M ,

min x, y A
_ u x, y  =  min x, y  A u x, y m,

Furthermore if x0, y0 A  with u x0, y0 = M  or u x0, y0 = m, then u is a 
constant function on A .

Example:  u x, y = x2 y2  is harmonic.  Where are the maximum and minimum 
values of u attained, on D

_
0; 2  ?

proof:  The maximum principle implies the minimum principle, since the minimum 
principle for u x, y  is equivalent to the maximum principle for v x, y = u x, y .  In 
other words, minimum values for u x, y  correspond to maximum values for u x, y , 
and u is harmonic if and only if u is.  So we'll focus on the maximum principle.  The 
key tool is the mean value principle for harmonic functions:  For every closed disk in A ,
the average value of u on the bounding circle equals the value at the center.  Can you 
see how the proof goes, if we follow the outline of the maximum modulus principle 
proof?  

Use:  if D z0; A  then for each 0 r ,

u x0, y0 = 1
2 

0

2 

u x0 r cos , y0 r sin  d



Math 4200-001
Week 8 concepts and homework

2.4-2.5
Due Friday October 23 at 11:59 p.m.

2.5     2, 5, 7, 8, 10, 15, 18. 
3.1    4, 6, 7, 12


